Personal Narrative Of Travels To The Equinoctial Regions Of America During The Years 1799-1804 - Volume 1 - By Alexander Von Humboldt And Aime Bonpland.
- Page 19 of 208 - First - Home
In The
Conflict Of Currents, As In The Oscillation Of The Waves, Our
Imagination Is Struck By Those Movements Which Seem To Penetrate
Each Other, And By Which The Ocean Is Continually Agitated.
We passed Cape St. Vincent, which is of basaltic formation, at the
distance of more than eighty leagues.
It is not distinctly seen at
a greater distance than 15 leagues, but the granitic mountain
called the Foya de Monchique, situated near the Cape, is
perceptible, as pilots allege, at the distance of 26 leagues. If
this assertion be exact, the Foya is 700 toises (1363 metres), and
consequently 116 toises (225 metres) higher than Vesuvius.
From Corunna to the 36th degree of latitude we had scarcely seen
any organic being, excepting sea-swallows and a few dolphins. We
looked in vain for sea-weeds (fuci) and mollusca, when on the 11th
of June we were struck with a curious sight which afterwards was
frequently renewed in the southern ocean. We entered on a zone
where the whole sea was covered with a prodigious quantity of
medusas. The vessel was almost becalmed, but the mollusca were
borne towards the south-east, with a rapidity four times greater
than the current. Their passage lasted near three quarters of an
hour. We then perceived but a few scattered individuals, following
the crowd at a distance as if tired with their journey. Do these
animals come from the bottom of the sea, which is perhaps in these
latitudes some thousand fathoms deep? or do they make distant
voyages in shoals? We know that the mollusca haunt banks; and if
the eight rocks, near the surface, which captain Vobonne mentions
having seen in 1732, to the north of Porto Santo, really exist, we
may suppose that this innumerable quantity of medusas had been
thence detached; for we were but 28 leagues from the reef. We
found, beside the Medusa aurita of Baster, and the Medusa pelagica
of Bosc with eight tentacula (Pelagia denticulata, Peron), a third
species which resembles the Medusa hysocella, and which Vandelli
found at the mouth of the Tagus. It is known by its brownish-yellow
colour, and by its tentacula, which are longer than the body.
Several of these sea-nettles were four inches in diameter: their
reflection was almost metallic: their changeable colours of violet
and purple formed an agreeable contrast with the azure tint of the
ocean.
In the midst of these medusas M. Bonpland observed bundles of
Dagysa notata, a mollusc of a singular construction, which Sir
Joseph Banks first discovered. These are small gelatinous bags,
transparent, cylindrical, sometimes polygonal, thirteen lines long
and two or three in diameter. These bags are open at both ends. In
one of these openings, we observed a hyaline bladder, marked with a
yellow spot. The cylinders lie longitudinally, one against another,
like the cells of a bee-hive, and form chaplets from six to eight
inches in length. I tried the galvanic electricity on these
mollusca, but it produced no contraction. It appears that the genus
dagysa, formed at the time of Cook's first voyage, belongs to the
salpas (biphores of Bruguiere), to which M. Cuvier joins the Thalia
of Brown, and the Tethys vagina of Tilesius. The salpas journey
also by groups, joining in chaplets, as we have observed of the
dagysa.
On the morning of the 13th of June, in 34 degrees 33 minutes
latitude, we saw large masses of this last mollusc in its passage,
the sea being perfectly calm. We observed during the night, that,
of three species of medusas which we collected, none yielded any
light but at the moment of a very slight shock. This property does
not belong exclusively to the Medusa noctiluca, which Forskael has
described in his Fauna Aegyptiaca, and which Gmelin has applied to
the Medusa pelagica of Loefling, notwithstanding its red tentacula,
and the brownish tuberosities of its body. If we place a very
irritable medusa on a pewter plate, and strike against the plate
with any sort of metal, the slight vibrations of the plate are
sufficient to make this animal emit light. Sometimes, in
galvanising the medusa, the phosphorescence appears at the moment
that the chain closes, though the exciters are not in immediate
contact with the organs of the animal. The fingers with which we
touch it remain luminous for two or three minutes, as is observed
in breaking the shell of the pholades. If we rub wood with the body
of a medusa, and the part rubbed ceases shining, the
phosphorescence returns if we pass a dry hand over the wood. When
the light is extinguished a second time, it can no longer be
reproduced, though the place rubbed be still humid and viscous. In
what manner ought we to consider the effect of the friction, or
that of the shock? This is a question of difficult solution. Is it
a slight augmentation of temperature which favours the
phosphorescence? or does the light return, because the surface is
renewed, by putting the animal parts proper to disengage the
phosphoric hydrogen in contact with the oxygen of the atmospheric
air? I have proved by experiments published in 1797, that the
shining of wood is extinguished in hydrogen gas, and in pure azotic
gas, and that its light reappears whenever we mix with it the
smallest bubble of oxygen gas. These facts, to which several others
may be added, tend to explain the causes of the phosphorescence of
the sea, and of that peculiar influence which the shock of the
waves exercises on the production of light.
When we were between the island of Madeira and the coast of Africa,
we had slight breezes and dead calms, very favourable for the
magnetic observations, which occupied me during this passage. We
were never weary of admiring the beauty of the nights; nothing can
be compared to the transparency and serenity of an African sky. We
were struck with the innumerable quantity of falling stars, which
appeared at every instant.
Enter page number
PreviousNext
Page 19 of 208
Words from 18402 to 19404
of 211363